Rutgers University: Complex Variables and Advanced Calculus Written Qualifying Exam
 August 2018: Problem 4 Solution

Exercise.

(a) Suppose that U is a domain in the complex plane, that f is holomorphic in U and continuous over \bar{U}, and that $|f(z)|=1$ for all $z \in \delta U$. Prove that, unless f is a constant function, $f(z)=0$ must have a solution in U.

Solution.

Suppose $f(z) \neq 0$ for all $z \in U$.
Then by the minimum modulus theorem f is holomorphic over bounded domain U, continuous over \bar{U}, and nonzero at all points, so f attains its minimum on δU
$\Longrightarrow|f(z)| \geq 1$ for all $z \in U$
$\Longrightarrow \exists z_{0} \in U$ such that $\left|f\left(z_{0}\right)\right| \geq|f(z)|$ for all $z \in \bar{U}$.
Therefore, f is holomorphic on U and $|f|$ attains its maximum in U, so by the maximum modulus principle f is constant.
Thus, if f is nonconstant, $f(z)=0$ must have a solution in U.
(b) Suppose that f is an entire function, and that $|f(z)|=1$ for all $z \in \mathbb{C}$ with $|z|=1$. Prove that $f(z)=a z^{n}$ for some $a \in \mathbb{C}$ with $|a|=1$ and $n \in \mathbb{Z}_{\geq 0}$. (Hint: Note that the family $\phi_{c}(z):=(z-c) /\left(1-\bar{c} z\right.$, for $|z|<1$, is meromorphinc on \mathbb{C}, satisfies $\left|\phi_{c}(z)\right|=1$ for $|z|=1$, and $\phi_{c}(1 / \bar{z}) \phi_{c}(z)=1$. You may want to study $f(z)$ in relation to this family.

Solution.

Look at power series expansion:

$$
f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}
$$

If $a_{n}=0$ for all n then $f(z) \equiv 0$, a contradiction.
Choose k such that $a_{n}=0$ for $n<k$ but $a_{k} \neq 0$.

$$
\begin{aligned}
\Longrightarrow \quad f(z) & =\sum_{n=k}^{\infty} a_{n} z^{n} \\
& =z^{k} \sum_{n=0}^{\infty} a_{n+k} z^{n}
\end{aligned}
$$

Let $g(z)=\sum_{n=0}^{\infty} a_{n+k} z^{n}$.
g is continuous and $g(0)=a_{k} \neq 0$
$\Longrightarrow \exists r>0$ s.t. $|g(z)-g(0)|<\left|a_{k}\right|$ for $|z|<r$
$\Longrightarrow g(z) \neq 0$ on $D_{r}(0)$
By part (a), $g(z)$ is constant on $D_{r}(0)$, and so $f(z)=z^{k} g(z)=a z^{k}$ for some $a \in \mathbb{C}$ and $|f(z)|=1$ when $|z|=1$.
Therefore, $|a|=1$, amd $f(z)=a z^{n}$ on $D_{r}(0)$, as desired.

