Rutgers University: Complex Variables and Advanced Calculus Written Qualifying Exam August 2018: Problem 4 Solution

Exercise.

(a) Suppose that U is a domain in the complex plane, that f is holomorphic in U and continuous over \overline{U} , and that |f(z)| = 1 for all $z \in \delta U$. Prove that, unless f is a constant function, f(z) = 0 must have a solution in U.

Solution.

Suppose $f(z) \neq 0$ for all $z \in U$. Then by the **minimum modulus theorem** f is holomorphic over bounded domain U, continuous over \overline{U} , and nonzero at all points, so f attains its minimum on δU $\implies |f(z)| \ge 1$ for all $z \in U$ $\implies \exists z_0 \in U$ such that $|f(z_0)| \ge |f(z)|$ for all $z \in \overline{U}$. Therefore, f is holomorphic on U and |f| attains its maximum in U, so by the **maximum modulus principle** f is constant. Thus, if f is nonconstant, f(z) = 0 must have a solution in U.

(b) Suppose that f is an entire function, and that |f(z)| = 1 for all $z \in \mathbb{C}$ with |z| = 1. Prove that $f(z) = az^n$ for some $a \in \mathbb{C}$ with |a| = 1 and $n \in \mathbb{Z}_{\geq 0}$. (Hint: Note that the family $\phi_c(z) := (z - c)/(1 - \overline{c}z)$, for |z| < 1, is meromorphine on \mathbb{C} , satisfies $|\phi_c(z)| = 1$ for |z| = 1, and $\phi_c(1/\overline{z})\phi_c(z) = 1$. You may want to study f(z) in relation to this family.

Solution.

Look at power series expansion:

_

$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$

If $a_n = 0$ for all *n* then $f(z) \equiv 0$, a contradiction. Choose *k* such that $a_n = 0$ for n < k but $a_k \neq 0$.

$$\Rightarrow \qquad f(z) = \sum_{n=k}^{\infty} a_n z^n$$
$$= z^k \sum_{n=0}^{\infty} a_{n+k} z^n$$

Let
$$g(z) = \sum_{n=0}^{\infty} a_{n+k} z^n$$
.
 $g \text{ is continuous and } g(0) = a_k \neq 0$
 $\implies \exists r > 0 \text{ s.t. } |g(z) - g(0)| < |a_k| \text{ for } |z| < r$
 $\implies g(z) \neq 0 \text{ on } D_r(0)$
By part (a), $g(z)$ is constant on $D_r(0)$, and so $f(z) = z^k g(z) = az^k$ for some $a \in \mathbb{C}$ and $|f(z)| = 1$ when $|z| = 1$.
Therefore, $|a| = 1$, and $f(z) = az^n$ on $D_r(0)$, as desired.